
J Comput Virol (2010) 6:161–180
DOI 10.1007/s11416-008-0101-5

EICAR 2008 EXTENDED VERSION

Identification of file infecting viruses through detection of self-reference
replication

Jose Andre Morales · Peter J. Clarke · Yi Deng

Received: 20 January 2008 / Revised: 27 June 2008 / Accepted: 6 July 2008 / Published online: 26 July 2008
© Springer-Verlag France 2008

Abstract This paper presents an approach to detecting
known and unknown file infecting viruses based on their
attempt to replicate. The approach does not require any prior
knowledge about previously discovered viruses. Detection is
accomplished at runtime by monitoring currently executing
processes attempting to replicate. Replication is the funda-
mental characteristic of a virus and is consistently present
in all viruses making this approach applicable to viruses
belonging to many classes and executing under several condi-
tions. An implementation prototype of our detection
approach called SRRAT is created and tested on the Micro-
soft Windows operating systems focusing on the tracking of
user mode Win32 API system calls and Kernel mode system
services.

1 Introduction

Current virus detection is primarily based on the use of a sig-
nature database. This approach is most effective in detecting
previously discovered viruses. Unfortunately, this approach
does not work well in detecting newly released unknown
viruses. Behavior based detection is a more effective appro-
ach in detecting unknown viruses. The principle drawback
to behavior based detection is the high production of false
positives. Despite this drawback, behavior based detection

J. A. Morales (B) · P. J. Clarke · Y. Deng
School of Computing and Information Sciences,
Florida International University, Miami, FL 33199, USA
e-mail: jmora009@cis.fiu.edu; jose@joemango.com

P. J. Clarke
e-mail: clarkep@cis.fiu.edu

Y. Deng
e-mail: deng@cis.fiu.edu

is the most promising approach to detecting newly released
unknown viruses. Several behavior based detection models
can be found in the literature [1, Chap. 4], [2, Chap. 11] and
[3, Chap. 5]. The detection methodology of each of these
models are normally based on identifying a specific set of
one or more characteristics found in a previously discovered
virus or viruses. These characteristics are present in some but
not all viruses. This results in a successful detection capacity
that is limited to a specific class of virus or under specific
execution conditions. Identifying a characteristic that is con-
sistently present in many viruses can lead to successful virus
detection in several classes and under many different execu-
tion conditions.

Replication is the fundamental qualifying characteristic of
all viruses [2, Chap. 1], [3, p. 7–78] and [4, p. 163]. For a spe-
cific malware to be classified as a virus it must have the ability
to replicate. This guarantees the replication characteristic is
consistently present in all viruses. Replication is therefore
an excellent basis for detection algorithms to successfully
detect viruses under several conditions and that belong to
many different classes [5]. When a virus replicates, it will
execute a series of operations that will cause the virus to be
written to some other area of the target system. The virus
can infect one or more currently existing files and infect the
system by copying itself to newly created target files. Both
of these infection types require a series of read and write
operations to succeed.

Self-reference is an essential property of the read and
write operations executed by a virus during replication. A
virus must refer to itself in order to replicate itself to some
other area of the target system. The term “itself” refers to
the static image of the virus file saved on a storage device
such as a hard drive. The name of the virus file is the same
as the name of the executing virus process. This name is
passed between read and write operations as the source or

123

162 J. A. Morales et al.

“from” argument of the replication. We name this property
the self-reference property (S R) and replication that occurs
using S R we identify as S R-replication.1 S R is the focus
of this research and S R-replication is the centerpiece of our
behavior based virus detection approach. We present a detec-
tion approach for S R-replication that is based on S R which
focuses on the transitive relation between a running virus
and a target file. The approach is tested in a real-time sce-
nario with a runtime monitoring implementation prototype
called SRRAT which focuses on user mode Win32 API sys-
tem calls and kernel mode system services. We assume that
by detecting S R-replication we can detect both known and
unknown file infecting viruses belonging to different virus
classes and that execute under several conditions. We fur-
ther assume S R-replication to be unique to viruses and that
it is unlikely for S R-replication to occur in benign processes.
We do recognize that not all viruses will replicate using
S R-replication and these viruses may not be detected by our
approach.

The contributions of this paper are:

(1) A detection technique for file infecting viruses based on
S R-replication.

(2) Ability to detect viruses with no prior knowledge of any
specific virus allowing for detection of both known and
unknown viruses.

Using S R-replication for virus detection does not require
any preliminary training or analysis of known viruses, this
is an improvement from previous work [5] which required
extensive preliminary training before running in a real time
system. The focus of the detection being on one specific char-
acteristic allows for thorough formalization that precisely
articulates the representation of S R-replication. This leads to
more accurate detection by eliminating possible ambiguities
during implementation. The elimination of preliminary anal-
ysis and knowledge of previously discovered viruses results
in a detection algorithm capable of true dynamic behavior
detection of viruses with no dependencies and no updates
while being capable of detection at the moment the virus
executes eliminating further infection and possible system
damage.

The remainder of this paper is as follows: Sects. 2 and
3 is background and motivation for this research. Section 4
presents formal definitions for S R and S R-replication and
the detection approach. Sections 5, 6, 7, 8, 9, 10, 11 and 12
describe our runtime monitor prototype SRRAT and the test-
ing results. Section 13 is related work and lastly Sect. 14 is
conclusion and our future work.

1 patent pending.

2 Background

The fundamental virus models [4, p. 163] and [6] explicitly
define virus replication. Cohen provides the seminal results
using Turning Machines to illustrate virus replication as sym-
bols on a tape transferred from one segment of the tape to
another segment of the same tape. During the transfer of sym-
bols, the virus refers to itself on read operations one symbol
at a time followed by a write operation of the just read symbol
which illustrates S R-replication. Adleman defined infection
as virus replication using recursive functions. Von Neumann
created a self reproducing automata showing that replication
can be defined formally with computational models [7]. In
the formalism of both Adleman and Von Neumann, S R is
present in the read and write operations that are executed
during replication.

A file can be considered as an abstract data type that has
attributes and operations. The attributes of a file include:
name, identifier, type, location, size, protection, and time,
date and user identification [8]. The basic operations of a
file include: creating, writing, reading, repositioning, delet-
ing and truncating [8,9]. A virus is defined as a program that
can infect other programs by modifying them to include pos-
sibly evolved version of itself [4, p. 2]. From the point of
view of the system, a virus is a file and therefore possesses
the attributes and operations of files. We can deduce that if the
virus copies itself is must therefore invoke the read and write
file operations when it is infecting other programs. Therefore
the virus must have the appropriate access privileges in order
to perform the copy [10]. In our approach it does not matter
if the copy was successful or not since we are just interested
in the virus making an attempt to replicate.

In this paper we use the name, identifier and location file
attributes to reference the static image of the file on a stor-
age device. The name (identifier—a unique tag) of a file F
is represented as F.name. The location of F is usually an
argument of the write and/or read operations that are used
during file replication. Writing F involves making a system
call specifying both the name of F and the location where
F will be written. To read F , a system call is invoked that
states the name of F and where in memory F or a part of F
will be placed. In the event that F cannot be written or read
in one execution of the operation then a pointer keeps track
of the next block to be written or read.

3 Motivation

Static analysis of viruses and benign processes was con-
ducted to establish preliminary support on our assumptions
of S R-replication. A test set of 56 viruses was built by down-
loading live samples from various Internet malware reposi-
tories [11,12]. A second test set of benign processes was

123

Identification of file infecting viruses through detection of self-reference replication 163

Table 1 56 Viruses with replication attempts

Email Replication Peer to Peer Replication Network Replication Win32 Replication
worms attempts worms attempts worms attempts viruses attempts

Baconex 1 Agobot.a 1 Afire.b 3 Apathy.5378 1

Bagle.a 1 Banuris.b 217 Afire.d 1 Arch.a 1

Bagle.j 1 Bereb.a 474 Bobic.k 1 Barcos.a 4

Bagle.k 1 Bereb.b 481 Bozori.b 1 BCB.a 6

Bagle.m 1 Blaxe 6 Bozori.e 1 Bee 2

Bagle.n 1 Cassidy 19 Bozori.j 1 Canbis.a 14

Bagle.o 1 Cocker 61 Cycle.a 1 Civut.a 1

Dumaru.r 3 Compux.a 36 Dabber.c 1 Cornad 1

Eyeveg.m 1 Delf.a 1 Domwoot 1 Jlok 2

Klez.a 3 Gagse 257 Doomjuice.b 1 Parite.a 1

Klez.e 1 Irkaz 2 Doomran 1 Parite.b 1

Klez.i 1 Kanyak.a 1 Incef.b 27 Tenga.a 1

klez.j 2 Kifie.c 2 Kidala.a 1 Watcher.a 1

Mimail.j 1 Mantas 233 Lebreat.a 1 Zori.a 1

Table 2 56 Benign processes with replication attempts

Benign Replication Benign Replication Benign Replication Benign Replication
processes attempts processes attempts processes attempts processes attempts

accevt 0 ckcnv 0 diskperf 0 ipconfig 0

accwiz 0 cleanmgr 0 dllhost 0 ipv6 0

actmovie 0 clipbrd 0 dmremote 0 lodctr 0

ahui 0 cmd 0 doskey 0 lpq 0

append 0 cmdl32 0 eventcreate 0 lsass 0

blastcln 0 common32 0 exe2bin 0 makecab 0

bootcfg 0 control 0 extrac32 0 mem 0

bootok 0 convert 0 fastopen 0 netsetup 0

cacls 0 cscript 0 finger 0 notepad 0

charmap 0 csrss 0 fsutil 0 ntbackup 0

chkdsk 0 ctfmon 0 getmac 0 openfiles 0

chkntfs 0 debug 0 help 0 ping 0

cipher 0 defrag 0 hostname 0 qprocess 0

cisvc 0 diskpart 0 iexpress 0 setup 0

built using 56 executable processes from the Microsoft
Windows System32 folder. All the viruses were randomly
chosen and belong to the classes of Win32 viruses, network
worms, email worms and peer-to-peer worms. The virtual
machine software VMware Workstation with Windows XP
SP2 was used to execute the the test sets. The programs Api
Spy 32 and Process Monitor [13,14] were used to create log
files documenting the system calls made by each process
in one complete execution. Each log file was examined for
S R-replication. This was determined through identification
of S R by examining the arguments of read and write sys-
tem calls for a reference in the “from” argument that was

the name of the currently executing process or a temporary
memory location where the currently executing process had
copied itself earlier in the execution. The results of the testing
are in Tables 1 and 2.

The total number of S R-replication for each process listed
in Tables 1 and 2 is the count of distinct filenames that each
process attempted to infect in one execution. We did not ver-
ify if each attempt was a success or a failure. The attempt
to perform S R-replication is enough for us to label the pro-
cess as a possible virus regardless if it is successful or not.
The test results showed all 56 viruses attempted S R-repli-
cation at least one time to as many as over 400 times in

123

164 J. A. Morales et al.

a single complete execution. None of the benign processes
attempted S R-replication. These results provided support of
our assumptions and motivation for this research.

4 Self-reference virus replication

In this section we will present a formal definition for S R and
S R-replication. An approach to detect S R-replication is also
presented along with an example of its use.

4.1 Definition

An operation o is invoked with arguments (a1 . . . an) by a
currently executing process P where P.name is the name
of P . The static file image F saved on a storage device is
from where P was created. The name and path of F is held
in F.name and P.name �→ F.name, thus P.name refers
both to P and F . The label T is a temporary memory loca-
tion containing a copy of F . When an operation o ∈ O =
{read(s, d), wri te(s, d)} where the source argument s = ai

and destination argument d = a j with 1 ≤ i, j ≤ n and
i �= j is invoked by P where s ∈ S = {P.name, T } then o is
said to have the self-reference property (S R). The argument
d ∈ D = {M, I.name} where M is temporary memory loca-
tion and I.name is the name of the destination static image
file I saved on a storage device with I.name �= P.name.
The formal definition for S R is given in Fig. 1.

We restrict the set O to only read and write operations. We
assume a process only needs to execute a sequence of these
two operations to attempt replication. The sets S and D are
restricted to static file images and temporary memory loca-
tions because we are only detecting replication of one file
to one or more files where one or more temporary memory
locations are used to complete the process. The basis case for
S R(o) = true is with o.s = P.name. In this case P refers

Fig. 1 Formal definition of SR property

to F in an attempt to read or write itself to o.d. In the case
where o.s = T , S R(o) = true when o(T, d) was invoked by
P at time t , o(s, M) was invoked by P at time t ′, t ′ < t and
T = M = F . In this case P must have previously invoked
at least one o with o.d = M , placing F into M which results
in M converting to T .

By uniquely enumerating all om executed by P with 1 ≤
m ≤ n, we can define S R(om) in terms of FRom .s as shown
in Fig. 2. Testing for S R(om) is equivalent to establishing a
transitive relation R between F and om .s. When FRom .s =
true → F = om .s through invocation of o1 . . . om by P .

P invokes a sequence of om operations with 1 ≤ m ≤ n.
If o1.s ∈ S, om .d = I.name, om = wri te(s, d), I.name �=
P.name and S R(F, I) = true then P is said to have
performed self-reference replication (SR-replication). The
formal definition of S R-replication in Fig. 3 focuses on
detecting processes that read and write their static file image
to other newly created or already existing static file images.
This can be accomplished in one write operation or in sev-
eral read and write operations, also many memory locations
can be used intermediately from F to I . S R(F, I) is estab-
lished by testing for S R on every o that leads from P.name
to I.name, thus S R-replication(P) = true iff a transitive
relation FRI = true. We assume that static file images can
only be read from and written to. The definition does not
detect a process that overwrites or modifies its own static file
image.

4.2 Detection

When P starts execution, the operations o can be traced using
a directed graph G consisting of edge = om and node =
{P.name, T, M, I.name}. A graph is created for each P in
a system and is linked to a specific P by the value of the first
node of G which must always be P.name. Upon P invoking
its first operation o where om .s = P.name a new G is created
and its root node = P.name. When a new edge is added it
must be of the form om .s → om .d with s ∈ S and d ∈ D and
the value om .s must already be present as a previous om .d
node in G with exception of cases where om .s = P.name
which is the root node of G. A sample graph is given in Fig. 4
for a process named vx1.

We can see from Fig. 4 each o is enumerated in order
of execution by P . The first two operations read(M1, M3),
wri te(M3, sys.bat) are not included in the graph G since

Fig. 2 Transitive relation
of SR

Fig. 3 Formal definition of SR − replication

123

Identification of file infecting viruses through detection of self-reference replication 165

2

4 5 6

1,6

2

3

4

5

G

Fig. 4 Sample abstract graph for vx1

neither has om .s = P.name which is vx1. The root node of
G must always be the first o of P where o.s = P.name. We
see this in read1 where read1.s = vx1. Notice the opera-
tion read1,6, the notation shows the operation with the same
arguments occurred twice, at the first and sixth invocation.
Every operation in G is true for S R and correctly placed
in the form om .s → omd. A test for S R-replication(vx1)

was done when the operationwri te5(M2, services.exe) was
added to G. The path vx1 rightarrow services.exe shows
the transitive relation FRI . This path also satisfies our
definition of S R-replication in Fig. 3 and therefore S R-
replication(vx1) = true. When a graph G of a process P
contains a path from P.name → I.name then FRI = true
which results in S R-replication(P) = true. Construction of
G only has to continue until S R-replication(P) = true at
which point P can be flagged as exhibiting virus replication.
If P finish execution and S R-replication(P) = f alse then
P is assumed benign.

If P invokes an operation om(s, d)where S R(O) = f alse
and om .d is already a node of G, then om .d must be removed
in one of two ways: If om .d is a leaf node, it is simply removed
and G remains the same. If om .d is an internal node in G
then om .d is removed and G is reorganized by eliminating
all incoming edges to om .d and repositioning all outgoing
edges from om .d to each child node to come from each par-
ent node of om .d to the child node. Fig. 5 shows graph G

4 5 6

2

3

4

5

G

Fig. 5 Reorganized abstract graph for vx1 after removal of node M_2

Table 3 Win32 API calls with equivalent read/write operation

Win32 API Read/Write operation

BOOL WINAPI CopyFile(

__in LPCTSTR lpExisting
FileName,

__in LPCTSTR lpNewFile

Name,

__in BOOL bFailIfExists); wri te(lpExisting

FileName,lpNewFile

Name)

BOOL WINAPI ReadFile(

__in HANDLE hFile,

__out LPVOID lpBuffer,

__in DWORD nNumberOfBytes

ToRead,

__out LPDWORD lpNumberOf

BytesRead,

__in LPOVERLAPPED

lpOverlapped); read(hFile,lpBuffer)

BOOL WINAPI WriteFileEx(

__in HANDLE hFile,

__in LPCVOID lpBuffer,

__in DWORD nNumberOf

BytesToWrite,

__in LPOVERLAPPED

lpOverlapped,

__in LPOVERLAPPED_

COMPLETION

_ROUTINE lpCompletion

Routine); wri te(lpBuffer,hFile)

from Fig. 4 after removal of node M2. The incoming edge
Read1,6 from the parent node vx1 was eliminated and the
outgoing edges Read4 and Write5 were each reposition to
come from the parent node vx1 to the child nodes M6 and
services.exe.

Our approach is based on general read and write oper-
ations. We assume any specific operation that performs a
read, write or copy by specifying in the arguments the source
and destination can be equivalently written using the gen-
eral read and write operations used in this research. Table 3
shows some Win32 API calls [15] and their conversion to
an equivalent general read or write operation. Note that we
are only interested in the source and destination arguments
of the operation.

Our approach focuses on detecting S R-replication on a
local machine, it currently does not detect S R-replication
from one local machine to another across a network, we
reserve this for future work. We are aware of the ability of

123

166 J. A. Morales et al.

some viruses to replicate without using S R-replication. This
can be accomplished either by replicating from a source that
is not P or invoking commands in some other process that
results in replicating P . These types of replication we refer to
as indirect self-reference replication, (I S R-replication), and
is currently not detectable by our current approach. Expand-
ing our approach to include I S R-replication is reserved for
future work.

4.3 Example

In this section we will use portions of the log file of a virus
used in our static analysis to give an example of S R and S R-

replication using a graph for testing. The log file was created
using API SPY 32 [13] which logs all the Win32 API calls
invoked by a process [15,16]. The example in Fig. 6 is of the
Cassidy worm, a packed Peer-to-Peer worm [2, p. 332] and
[17] that from our static analysis testing results in Table 1
attempted replication 19 times. From the partial log file we
see the Cassidy worm attempted to copy itself six times using
the API call CopyFileA which is the same as the API
call CopyFile but is used when dealing with the ANSI
character set [15]. From Table 3, CopyFileA is mapped
to wri te(lpExistingFileName,lpNewFileName).
As an example, the fourth CopyFileA operation is mapped
to:

playstation2
emulator.exe

1

2

3 4

5

6

Partial Log File for Cassidy Worm

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 pindlebot.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 pindlebot.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 maphack.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\diablo 2 maphack.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\playstation2 emulator.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\playstation2 emulator.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\kazaa hack.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\kazaa hack.exe",
 DWORD:00000104)

00402D6E:CopyFileA(LPSTR:00BA0330:"C:\DOCUME~1\JAM-VX~1\Desktop\CASSIDY.EXE",
 LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\cable modem utility.exe",
 BOOL:00000000)
00402D28:GetWindowsDirectoryA(LPSTR:00BA0200:"C:\WINDOWS\Shared Folder\cable modem utility.exe",
 DWORD:00000104)

Fig. 6 SR − replication of cassidy peer-to-peer worm

123

Identification of file infecting viruses through detection of self-reference replication 167

wri te(“C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.
EXE”, “C:\WINDOWS\Shared Folder\kazaa hack.exe”).

All the other operations are mapped in similar fashion.
From the graph we see rootnode = CASSIDY.EXE and
S R(om) = true for each om in the graph. Consider

wri te4(C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.
EXE, C:\WINDOWS\Shared Folder\kazaa hack.exe).
We can see:

P = CASSIDY.EXE, P.name = wri te4.s =
C:\DOCUME 1\JAM-VX 1\Desktop\CASSIDY.EXE and
I.name = wri te4.d = C:\WINDOWS\Shared Folder
\kazaa hack.exe.

Applying these values to the definition of S R in Fig. 1,
we see S R(wri te4) = true and this result holds for all the
other wri tem operations as well. When operation wri te1

was invoked, the graph was updated and a test for S R −
replication was conducted since a wri te operation occurred
with wri te.d = I.name = diablo 2 pindlebot.exe. Accord-
ing to the definition in Fig. 3, S R-replication(C ASSI DY.

E X E) = true. Had this been a real time detection, the pro-
cess would have been flagged as exhibiting virus replication
behavior. To allow readability, only the filenames were placed
in the graph of Fig. 6 when it should be the complete path
and filename.

5 Implementation prototype

To test our S R-replication theory, a runtime monitor imple-
mentation prototype named SRRAT (S R-Replication Anal-
ysis Tool) was created in two versions. One version runs in
user mode and the other in Kernel mode, both prototypes
were built to run on the Windows XP platform. The user
mode version tracks API function calls and the Kernel version
tracks system services used by all currently running processes
using a technique known as hooking [18,19]. Each prototype
followed the design architecture in Fig. 7. The architecture
consists of two main components: API Call Processor and
the S R-Replication Detector. The API call processor is com-
posed of: HookAPI, MapAPI-RW and an API Repository.
The S R-Replication Detector consists of: S R test, S R-Rep-
lication test, Update-Graph and a graph storage.

The overall idea of the prototype is to follow the execu-
tion of processes on a system. As the process executes it
will inevitably interact with the operating system and this
interaction is recorded and analyzed by SRRAT. The method
of interaction between all processes including viruses and
the operating system is through the invocation of API func-
tion calls and Kernel system services [16,18–20]. SRRAT
tracks only a subset, principally those that implement file sys-
tem operations: open, close, read, write, copy and and a few
other operations. When one of these is invoked by a process,
SRRAT hooks it and analyzes its parameters to determine

API Call Processor

SR-Replication Detector

Fig. 7 SRRAT architecture

the presence of S R and if S R-replication has occurred. A
hook is a method by which a user can redefine a standard
API call and have the operating system redirect invocations
of the standard API call to the user defined API call.

It is very powerful in the sense that a user can modify the
execution behavior of processes without having direct access
to the source code of that process. The following is a descrip-
tion of the purpose and responsibility of each component of
SRRAT.

5.1 ACP: API CAll processor

The API Call Processor’s (ACP) main purpose is to detect
the invocation of an monitored API call and pass its parame-
ters to the S R-replication detector. The ACP is in idle mode
waiting for the operating system to send a notification that
a monitored API has been invoked by some process. At this
point the APC takes control of the invocation and checks to
see if the API is a read or write operation according to a pre-
defined mapping. If the API is a read or write operation the
APC passes it along with its parameters to the S R-replication
detector for further processing. During this time the process
that originally invoked the API is in a wait state pending
the completion of the API. This serves to stall the execution
of possible viruses while they are being analyzed for
S R-replication. The APC consists of two subcomponents

123

168 J. A. Morales et al.

called HookAPI and MapAPI-RW plus an API repository
which are explained next.

The HookAPI subcomponent of the ACP is responsible
for the actual interception of the API calls being monitored
by SRRAT. The interception is done using an API hooking
mechanism that notifies the ACP of the invocation of a spe-
cific API call which HookAPI has hooked. Once the process
calls an API that has been hooked, the operating system redi-
rects the call from the standard API to the user defined API
where the redirection is part of HookAPI. When HookAPI
completes its job the standard API call and its parameters
have been redirected to the user defined API call and thus
commences the second component of ACP which is
MapAPI-RW.

The second subcomponent of the ACP is called
MapAPI-RW and it serves the singular purpose of decid-
ing if the API call that has been passed to it is a general
read or write operation. If the API is determined to be a read
or write operation then the API is labeled as such and it is
passed along with the source and destination parameters to
the S R-replication detector, which is the second component
of SRRAT. The determination of an API being a read or write
operation is accomplished by searching for the API name in
the API repository and checking if its mapping is to a read
or write operation. If it is matched to a read or write oper-
ation, the API parameters specified in the repository as the
source and destination parameters are parsed from the API
call’s parameter structure and passed along with the API and
its read/write label to the S R-replication detector.

The ACP has an API repository which is a list of all the
hooked API functions. The list has the API function name and
the parameter names of the source and destination parame-
ter according the the specific API function’s documentation
[16,20] along with its mapping as a read or write operation.
The API repository does not have the name of API functions
that are not read or write operations even though they may be
hooked by SRRAT for various implementation reasons. Only
those API functions that represent a read or write operation
require a mapping to a general read or write operation with
the appropriate parameters and therefore are the only ones
that need to be stored in the repository.

5.2 SRD: S R-replication detector

The second main component of SRRAT is the S R-replication
detector (SRD). This component will execute as a result of
the ACP passing along to SRD an API function that has been
determined to be a read or write operation. The API func-
tion is received with the function name, a read or write label
and the source and destination parameters. SRD has sev-
eral responsibilities, the first one is to check for S R, if S R
has occurred then a graph has to be created for the process
that invoked this API function. If a graph already exists it

is updated. The second responsibility is to check for
S R-replication, this is done when a graph is updated with
a write operation where the destination is the name of a file.
The third responsibility is to return a detection confirmed
message back to SRRAT so the process can be terminated
and flagged as exhibiting possible virus behavior. The read
and write operations of a process are stored in a graph using
nodes and edges. S R-replication is determined by travers-
ing the graph to establish transitivity between the process
name at the root node and a file name located in some leaf
node. SRD is composed of three subsections: S R-test,
S R-replication test and update graph plus a graph storage
which are explained below.

The S R-test subcomponent of the SRD is responsible for
testing if a process has attempted to reference itself in the
source parameter of an API function that it has invoked. We
are most interested in this case when it occurs in read or write
operations. The test is performed by comparing the process
name with the source parameter of the API function. If the
process name is a substring of the source parameter then the
process has tested positive for S R. The other form of test-
ing for S R is to search the existing graph of the process for
a node that matches the source parameter of the API func-
tion. If a match is made on the graph then process has tested
positive for S R. When S R occurs the API function with all
its parameter information is passed along to update graph for
insertion in an existing graph or creation of a new graph.

The second subcomponent of the SRD is called
S R-replication test (SRT) and its principle responsibility is to
check if S R-replication has been attempted by a specific pro-
cess. This test occurs every time a process’s graph has been
updated with a write operation where the destination is a
file. The graph is traversed backwards from the just inserted
node, which contains the destination parameter of the API
function which is a file name and path, back to the root node
of the graph. If a path exists between these two points then
the transitivity property holds true between the process and
another file and therefore S R-replication has been attempted
and SRT returns true to SRRAT.

The third subcomponent of SRD is Update-Graph which
is in charge of adding new nodes to the graph as they are
passed in from the S R-test. When an API function with its
source and destination parameter are passed in, one of sev-
eral actions can be taken. If there is no existing graph for the
process that invoked this API function and the source param-
eter is the file name and path of the process, then a new graph
is created with the source parameter as the root. If a graph
already exists for the process, the graph is traversed to find a
node that matches the API functions source parameter. When
a match is made if the node has no outgoing edges or none of
its outgoing edges point to a node that matches the destina-
tion parameter then a new edge is created from the existing
node to a new node with the file name and path stored in the

123

Identification of file infecting viruses through detection of self-reference replication 169

destination parameter. If an edge already exists with the same
source and destination parameters but a different API func-
tion name on the edge, the new edge is created. If an edge
already exists with the same source and destination parame-
ters and the same API function name on the edge then only its
enumeration is modified to show the order of execution for
multiple attempts of the same API function by the same pro-
cess with the same source and destination parameters. Once
the update to the graph is done, a notification is sent to SRT
if and only if the just inserted edge contains an API function
that is a write operation. The last operation done by this sub-
component before exiting is to save the graph in the Graph
Store.

The SRD has a Graph Store which is a temporary mem-
ory storage of all the graphs currently being used by SRRAT
to track processes. Each graph is accessed by the root node
which holds the name of the process currently running on
the system. When a process with a graph in the store finishes
execution or is terminated by SRRAT, its graph is destroyed
to release memory and reduce resource usage on the system.

6 User mode prototype

The first version of SRRAT was implemented as a user mode
process running in Windows XP. In this version, SRRAT
traced the Win32 API function calls invoked by all currently
running user mode processes. The prototype was a termi-
nate and stay resident runtime monitor, meaning it would be
quietly running in the background monitoring the execution
behavior of all user mode processes currently running on the
system while conveniently placed as an icon in the windows
task bar for simple start and stop functionality. The API func-
tions that were traced for read and write operations are listed
in Figs. 8 and 9 along with their read/write mapping and the
source and destination parameters. All the API functions that
were monitored by SRRAT are located in the kernel32.dll
dynamic link library. SRRAT implemented API hooking on
the functions that were being monitored. To successfully per-
form hooking SRRAT was implemented as a dynamic link
library. Aside from the API functions monitored in Figs. 8
and 9 for their read and write operations necessary to estab-
lish S R and S R-replication, there were other API functions,
listed in Fig. 10 that had to be hooked and monitored to cor-
rectly implement this version of SRRAT. The following is
a description of the implementation of the components of
SRRAT in user mode.

6.1 Implementation

The HookAPI was implemented using hooking techniques
for Win32 user mode API function calls. This is accom-
plished with the invocation by HookAPI of an API function

Fig. 8 Mapping of read Win32 API calls in user version SRRAT

Fig. 9 Mapping of write Win32 API calls used in user version SRRAT

called SetWindowsHookEX [16,20]. Invoking this func-
tion allowed SRRAT to hook API functions by rewriting the
IAT of all currently running processes. SRRAT reads from
the API repository all the API function names that needed
to be monitored which are listed in Figs. 8 and 10. These
names are loaded into memory and HookAPI invokes Set-
WindowsHookEX. For each API functions that needs to be
hooked, SRRAT has a new version of the API which imple-
mented our S R-replication detection code. Each running pro-
cess has in its IAT table the memory address of all the Win32
API functions that it may invoke during its execution. When
the hooks are placed for SRRAT, Windows overwrites these
memory locations with memory locations of our redefined
API functions. This change of memory addresses allowed
Windows to redirect invocations of the monitored API func-
tions from the standard API function to our version of the
function. Hooking the API functions in HookAPI was the
critical step needed for SRRAT to function.

The MapAPI-RW subcomponent was automated as a
result of API hooking techniques. Our redefined API func-
tions are executed only when the API is invoked by some

123

170 J. A. Morales et al.

Win32 API Read/Write operation
void CreateFileW(
LPCWSTR lpFileName); update list with new file/handle:

lpFileName and HANDLE
HANDLE WINAPI CreateFileA(
LPCSTR lpFileName); update list with new file/handle:

lpFileName and HANDLE
HFILE WINAPI OpenFile(
LPCSTR lpFileName); update list with new file/handle:

lpFileName and HFILE
BOOL WINAPI CloseHandle(
HANDLE hObject); hFile lpBuffer

BOOL WINAPI DeleteFile(
LPCTSTR lpFileName); remove from list existing file/handle:

lpFileName

Fig. 10 List of Win32 API calls needed to implement user version of
SRRAT

process. As a result when the body of our API function
executed we already predetermined the function to be a read
or write. In the body of the function we inserted code to
read the correct parameters that represented the source and
destination and continued to the SRD component of SRRAT.

One key piece of information needed for the SRD to work
was acquiring the name of the process invoking the API
function currently being processed through SRRAT. In Win-
dows, process names are represented in two forms, the first
is as a string containing the full process name and path, the
second is with a process id (PID). When a process starts
execution, Windows assigns it an integer value which is the
process’s PID, this value is used for various tasks throughout
the life cycle of the process, especially when it interacts with
the Windows operating system. When a process invokes a
hooked API, Windows provided SRRAT a field of the hooked
API structure containing the full process name and path as a
string. This was used to implement the SRD.

A second key piece of information used by SRD is names
of files that are read or written by a process. In similar fash-
ion to processes, files in Windows are represented in two
forms, the first is a string with the file name and path, the
second is with a file handle. The file handle is an integer
value assigned to a file when it is first opened by a process
and destroyed when the file is closed. Some API functions
such as ReadFile and WriteFile, use handles to rep-
resent the file that is being accessed but other API functions
such as OpenFile use a string to represent the filename.
Thus one file can have two ways of representation and this
required the SRD to keep a list of file names and their asso-
ciated handle. Each time the API functions OpenFile and
CreateFile was invoked, SRD would make a new entry
in the list of the newly opened or created file and the associ-
ated file handle. This entry would later be removed from the
list when CloseFilewas invoked. Each time ReadFile,
WriteFile functions were invoked SRD would look up the
file handle and return the associated file name and path.

Once all the needed information became accessible to the
SRD, performing S R tests was straightforward, every time a

read operation occurred the filename and path in the source
parameter would be compared to the process name. If the pro-
cess name was a substring of the source parameter then S R
was indeed present. Each time S R was found the graph for
the process would be updated in Update-Graph. The graph
store was a set of graphs each one with a different process
name as the root node which identified the graph uniquely.
A test for S R-replication occurred each time the Write-
File or CopyFile API function was hooked. The graph
for the process was retrieved from the storage and traversed
backwards from the newly added destination node from the
WriteFile or CopyFile API to the root node checking
for transitivity. When S R-replication was established for a
specific process, that process was terminated by SRD using
the TerminateProcess API function [16,20].

6.2 Limitations

Several viruses do not interact with the operating system at
the user mode level. Instead, they deal directly with the ker-
nel and its function calls thus completely avoiding SRRAT.
These viruses cannot be detected by the user mode version
of SRRAT. Also this version ran in user mode and can be
infected by the very same virus it is trying to detect if the
virus injured before infecting, thus rendering SRRAT use-
less. Some viruses purposely encrypt the parameters when
calling an API, SRRAT would process these parameters cor-
rectly but can produce a false negative since the encrypted
parameters do not match the actual files being manipulated
by the virus. Other viruses call the API functions directly
by loading the dynamic link library and acquiring the mem-
ory addresses of the API functions needed for the virus to
run. Later in execution the virus passes the parameters to the
memory location while completely preventing detection by
avoiding the hooks placed by SRRAT.

7 Kernel mode prototype

The second version of SRRAT was created to run in
Windows Kernel mode. This version traced the Zwxx system
services provided by the ntdll.dll dynamic link library which
are exported from the Kernel process named ntoskrnl.exe.
These are all Kernel system services and can be called directly
by a Kernel process or indirectly by a user mode process.
When a user mode process invokes a user mode API such
as OpenFilethe API function sends the request from user
mode to a system service in Kernel mode, in this case
ZwOpenFile. Tracing Kernel mode system services has
three main advantages over tracing user mode API function
calls:
• This version allows high probability of identifying

S R-replication that may have been missed by the user

123

Identification of file infecting viruses through detection of self-reference replication 171

mode version. This results from the higher level of dif-
ficulty any process, including viruses, faces in trying to
execute and avoid using Kernel mode system services. It
is very difficult to avoid interacting with the Kernel in
some form, thus the probability of detecting S R-replica-
tion.

• SRRAT itself has a higher level of protection from virus
infection by running in the Kernel. The Kernel is consid-
ered to be privileged access and not every process includ-
ing other Kernel processes can have direct access to this
privileged space. This give SRRAT a higher rate of sur-
vivability from virus attack and therefore increases the
chances of running longer and detecting S R-replication.

• The form in which Zwxx system services are structured
requires two parameters to be included that represent the
file name with path and the file handle. This requirements
eliminates the need to hook and open or close system ser-
vices and also eliminates the need of SRRAT to keep a list
of file names and handles. This reduction in processing
allows SRRAT to run faster and with less consumption
of processing time.

To run a process in Kernel mode it must be executed by
loading it as a system service. Two separate programs were
created for this purpose, one to load and the other to unload
the service from the operating system. Normally, services do
not have user mode start and stop functions, these were added
for convenience. Also SRRAT in this version was purposely
created as a rootkit [18,19] to include some techniques allow-
ing SRRAT to hide from the system and therefore avoid being
attacked or infected by a virus. The two techniques used for
this purpose was: (1) the system service was hidden from the
operating system, the name of the service would not show

as currently running by any application in Windows and (2)
the configuration file used by the service was redirected to a
different part of the operating system thus hiding it as well.
These are only basic hiding techniques but in fact are very
useful. They allow SRRAT to run on the system as an invis-
ible process which puts SRRAT on the same level playing
field as some advance viruses which is necessary for any
virus detector to run effectively and successfully.

Hooking system services has a different implementation
than hooking Win32 API function calls but the underlying
theory is the same. In the Kernel all the system services
including the Zwxx services are exported by their memory
location to a table called the System Service Dispatch Table
(SSDT). When a request for a service comes in from user
mode, the specific request is located in the SSDT and the
operating system carries out the service. Similarly to hook-
ing Win32 API function calls, this version of SRRAT had a
list of redefined system services, when SRRAT was loaded
it would overwrite in the SSDT the memory location of the
standard system services with our redefined versions and thus
the requests would be redirected to SRRAT and its redefined
versions, this is how SRRAT hooked the needed Zwxx sys-
tem services, which are listed in Fig. 11. The following is
a description of the implementation of the components of
SRRAT in Kernel mode.

7.1 Implementation

Overall implementation in this version of SRRAT was much
easier than the user mode version for both the ACP and the
SRD. HookAPI was implemented by modifying the mem-
ory address of standard system services with our redefined
versions in the SSDT. Since there is only one SSDT for the

Fig. 11 Mapping of system
services used in Kernel version
SRRAT

123

172 J. A. Morales et al.

entire operating system, the actual hooking only had to occur
by SRRAT once as opposed to the user mode version where
hooking occurred once for each process. The number of sys-
tem services hooked were less than those in the user mode
version, they primarily were only the Zwxx system services
that represented a read or write operation. In Kernel mode
system services decompose user mode file operations to basic
read and write operations. Most notably the Win32 API func-
tion call CopyFile is translated to a call to ZwReadFile
and ZwWriteFile in Kernel mode. This decomposition
to simplified services greatly reduced the implementation of
HookAPI.

As was the case in the user mode version of SRRAT, the
MapAPI-RW subcomponent was automated as a result of
system services hooking techniques. Our redefined system
services are executed only when the Kernel receives a request
for a specific system service. As a result when the body of
our system service executed we had already predetermined
the service to be a read or write. The services’s body had
code inserted to read the necessary parameters that repre-
sented the source and destination parameters of the service
and SRRAT continued to the SRD component of SRRAT.
In this version of the ACP, the API repository had a much
smaller list of system service functions needed to be hooked.
This was a key advantage allowing for slightly less memory
usage when SRRAT was operating.

The SRD was implemented in principally the same fash-
ion as in the user mode of SRRAT. Both the test for S R and
the SRT subcomponent has the same basic code as their user
mode version. One difference was the removal of the list of
file names and handles which was needed in the user mode
version for the SRD to work properly. In Kernel mode the
system services already provide all the file information that
had to be found by SRD in user mode. This slight reduction
in code creates a faster implementation which is key when
dealing with aggressive fast spreading viruses. The graph
store was kept in Kernel memory and the individual graphs
were created, destroyed and accessed in the same manner as
the user mode version. When a process was found to have
exhibited S R-replication it was terminated using the Kernel
system service ZwTerminateProcess.

7.2 Limitations

The main limitation with this approach was in its implemen-
tation. Kernel mode programming is a very complex form
of programming and there is little documentation available
to aide the programmer. Many of the types, structures, func-
tions found in the Kernel are not documented and using them
with some confidence is only based on feedback from other
programmers that have walked the path before. Implementing
most of the code took some researching before being success-
ful. Only with experience can a programmer become skilled

in working with the Kernel. Most of the implementation was
built using already established code heavily modified and
questions posted on various forums provided some answers
and partial solutions, the rest was done through trial and error.
Many of the undocumented code used in this version had to
be modified or rewritten to please the build environment into
successfully compiling and building the executable version
of SRRAT.

Two main limitations encountered during implementation
was: (1) obtaining the name of the process requesting the
system service, which is critical to test for S R, graph cre-
ation and identification and (2) Acquiring enough memory
for SRRAT to effectively run. It was very difficult at first to
obtain working code that would produce a string represent-
ing the name of the process. After 4 days of trial and error
the name was finally obtained. The Windows Kernel seem-
ingly runs within a limited memory space called pools and
all kernel processes use this memory pool for their specific
purposes. Allocating and using Kernel memory is a difficult
science to understand and implement. Several setbacks were
suffered by SRRAT using too much memory causing Win-
dows to display a blue error screen, also known as the Blue
Screen of Death (BSOD), which led to the system crashing
and requiring a restart. The main memory problems came
with building the graphs in the SRD which works by imple-
menting a linked list, each pointer was created with a chunk
of kernel memory, it seemed this process repeated several
times caused the system to produce the BSOD. The memory
problem was not solved and this resulted in the implementa-
tion creating log files displaying all of the needed information
to detect S R-replication in a given process.

8 Tests and results

A suite of experiments were created to test the theory of
S R-replication and the user and Kernel mode implementation
prototypes of SRRAT. The tests were conducted with viruses
drawn from a collection of 445 virus samples. The collection
was built from malware repositories on the Internet [11,12].
The viruses in the collection were chosen to be representa-
tive of all the major categories of virus types. The amount
of virus samples for each category is listed in Fig. 12. All
the sample viruses in the collection were scanned using Kas-
persky Anti-Virus software [21] to validate their authenticity,
name and classification. The focus of these tests was to count
the total number of correct identifications of viruses plus the
total amount of false negatives and false positives produced
by the prototypes. All the tests were conducted on a desktop
computer running Microsoft Windows XP with no anti-virus
software installed. The testing involving viruses were done
using Vmware Virtual Workstation [22], which allows for

123

Identification of file infecting viruses through detection of self-reference replication 173

Virus Types Total Samples
Email Worms 110
Network Worms 99
Peer-to-Peer Worms 79
Instant Messaging Worms 6
Win32 Viruses 151

Fig. 12 Virus classification with total samples amount

safe isolation of the viruses from infecting an actual machine
while providing a rich real computer emulation environment.

Testing the theory of S R-replication entails inquiring if
this is a characteristic that occurs in multiple viruses across
several different virus classifications and can further be iden-
tified in some manner. More importantly, it is pivotal to estab-
lish if S R-replication is a characteristic that does not occur
in benign processes, this is one of our assumptions. Estab-
lishing these two points will indicate if S R-replication can
be used to distinguish between viruses and benign processes
and at the same time produce little or no false negatives and
false positives.

Our approach to test the theory of S R-replication was to
execute several viruses and commonly used applications and
operating system processes and have their Win32 API func-
tion calls and Kernel system service requests with source and
destination arguments recorded and analyzed. The program
used for this was API SPY 32 [13] which records Win32
API function calls and Process Monitor [14] which records
Kernel system service requests. The benign processes used
for testing were chosen by logging all processes running on
two computers on a 5 day span, the processes executed the
most were chosen for testing. The viruses chosen for this
test were randomly selected from the collection assuring that
each category was represented in this test set.

In testing the user mode implementation prototype of
SRRAT three criteria need to be analyzed, they are: false
positive production, false negative production and usability
as a real time monitor and detector. To test for false nega-
tive production a test set of viruses were executed one by
one in the virtual machine software with SRRAT running.
False positive production was tested together with usability
as a real time monitor and detector by running SRRAT on
two actual computer desktops for three days under normal
computer use. Both computers had full Internet access and
carry heavy use of several popular desktop applications plus
Internet programs. Installations of new software and updates
to already existing software were purposely done during the
testing period as well. Anti-virus software was present and
running on both computers during testing. The viruses were
chosen by using those that showed use of Win32 API func-
tion calls during their execution as recorded by the API SPY
32 log files. This resulted in a set of 66 viruses.

The Kernel Mode Prototype of SRRAT was tested
using the same three criteria as that used for the user mode

prototype: false positive production, false negative produc-
tion and usability as a real time monitor and detector. Testing
false positive production was conducted jointly with usability
as a real time monitor and detector by executing SRRAT on
two actual computer desktops for three days under normal
computer use. The two computers had full Internet access
and experience heavy daily use of many popular Internet and
desktop applications. New software installations and updates
to already existing software were purposely done during the
testing period as well. Anti-virus software was running on
both computers during testing. Testing for false negative pro-
duction was done by executing a test set of viruses one at a
time in the virtual machine software with SRRAT running.
The viruses were chosen by using those that showed use of
Kernel system services during their execution as recorded by
the Process Monitor log files. This resulted in a set of 367
viruses.

Performing the tests was a long and strenuous process.
The nature of virus testing requires several re-installations
of the host computer to ensure a clean virus free environ-
ment for the next test. To ensure that each virus was exe-
cuted in a virus free environment, the Vmware workstation
virtual machine was restored to a clean state after conclud-
ing each test. Assuring a virus free environment for each test
was needed to ensure that a virus was not kept form execut-
ing normally as a result of a previous virus’s infection on the
virtual machine. What follows is an analysis and evaluation
of all the test results along with observations and experiences
from conducting the tests.

9 Theory validation test results

Conducting this test took approximately 4 days to complete.
The benign process testing was completed in one day and the
balance of days was taken by the virus testing. The test results
for the benign processes are presented in Fig. 13. The first and
fourth columns are the names of each benign process tested,
the second and fifth columns are the results of testing for S R,
the third and sixth columns are the test results for S R-repli-
cation with Y meaning yes and N meaning No. When testing
commenced we decided to also record any occurrence of S R.
Our reasoning for this was if a benign process was an S R
process and did not attempt S R-replication during testing,
the possibility of attempting S R-replication could still occur
under different execution conditions. Therefore we consid-
ered an S R benign process as being a potential false positive
assuming the correct execution conditions were in place for
S R-replication to occur. The test results show that all 62
benign process not only did not attempt S R-replication but
none even attempted S R. The result is the whole test set can
be classified as non-S R benign processes based on the test
results. Not finding any S R-replication did not surprise us as

123

174 J. A. Morales et al.

this characteristic not being found in benign processes is one
of our main assumptions in this research. We were surprised
though that none of the processes attempted S R. As each
process was executed we interacted with them in as many
typical user ways as possible to afford maximum possibility
to the process to exhibit different forms of behavior. Finding
none of these processes attempted S R-replication and S R
supports our assumption that S R can be used to distinguish
between viral and non-viral processes. Furthermore the lack
of S R reenforces our assumption by showing that not only
do benign processes not attempt S R-replication but they may
not even read themselves, thus not be an S R process, in any
way during their execution. This further distinguishes benign
from viral based on S R-replication characteristic and reduces
the chances of false positive production.

All 284 viruses were tested one by one in the virtual
machine for the attempt of S R-replication. The virtual
machine was reset to a clean virus free state before each
test was conducted. A summary of the virus results are in

Email Peer-to-Peer Network Win32
Worms Worms Worms Viruses

-replication 43 47 45 13
No replication 28 24 26 58

Fig. 14 Summary results theory validation virus test

Fig. 14. Analyzing the results it becomes clear that a major-
ity of the viruses did in fact show S R-replication with the
exception of the Win32 Virus class. For that class the major-
ity, 58 viruses, did not show S R-replication. The viruses that
did not show S R-replication could be the result of advanced
anti-detection techniques. Some viruses have the capacity to
detect running processes that may be used to terminate or
erase them, if they detect such a process they will behave as
a benign process and do nothing exhibiting virus like behav-
ior, this of course includes replication. Another reason for
these viruses not showing S R-replication is they may have
not found the right conditions to replicate. Win32 viruses

Fig. 13 Theory validation test
results benign processes

Benign Benign
Process Process
AcroRd32.exe N N netbeans.exe N N
AcroRd32Info.exe N N OUTLOOK.EXE N N
Ad-Aware.exe N N pa.exe N N
AlbumDB2.exe N N palaunch.exe N N
AsusProb.exe N N pastatus.exe N N
bibtex.exe N N pdflatex.exe N N
CFD.exe N N PHOTOED.EXE N N
csrss.exe N N POWERPNT.EXE N N
Deskup.exe N N procexp.exe N N
devenv.exe N N Procmon.exe N N
emule.exe N N rundll32.exe N N
ErrorKiller.exe N N services.exe N N
EXCEL.EXE N N Skype.exe N N
Explorer.EXE N N sol.exe N N
firefox.exe N N sqlservr.exe N N
FrameworkService.exe N N svchost.exe N N
gbk2uni.exe N N symlcsvc.exe N N
GoogleEarth.exe N N SyncBackSE.exe N N
HWN.exe N N System N N
IEXPLORE.EXE N N TEXCNTR.EXE N N
iexplore.exe N N TexFriend.exe N N
java.exe N N tomcat5.exe N N
LimeWire.exe N N verclsid.exe N N
MATLAB.exe N N WCESCOMM.EXE N N
Mcshield.exe N N WinEdt.exe N N
MemoryManagement.vshost.exe N N winlogon.exe N N
MSACCESS.EXE N N winmine.exe N N
mscorsvw.exe N N WinRAR.exe N N
msnmsgr.exe N N WINWORD.EXE N N
naPrdMgr.exe N N wmiprvse.exe N N
nbexec.exe N N wuauclt.exe N N

123

Identification of file infecting viruses through detection of self-reference replication 175

Fig. 15 EW-Win32.Alanis SR-replication graph

tend to infect files that are of a specific format, most nota-
bly the Portable Execution (PE) format. It is possible these
viruses searched for victim files and simply did not find any
and thus could not replicated. A second interesting observa-
tion from the results is where the S R-replication occurred.
Of the viruses that did replicate, the overwhelming majority
did so in Kernel mode and a smaller amount replicated in user
mode. Only three viruses replicated in both user and Kernel
mode. The implication of the majority of these viruses rep-
licating in Kernel is they do this purposely to attempt detec-
tion avoidance. By executing in Kernel mode they have the
capacity to run below or at the same level as virus detectors
thus allowing them more leeway to hide and avoid detection.
Just considering only the static analysis, the viruses that did
not show S R-replication are false negatives. It is however
difficult to say if they really could be false negatives for the
reasons stated here, it is possible they could be detected with
the proper virus detector in place.

Overall the theory validation testing results strongly
support our assumption that S R-replication can distinguish
between viruses and benign processes. The key to this con-
clusion is the fact that no false positives occurred and several
true positives occurred. If false positives had occurred then
one can conclude that S R-replication is a characteristic gen-
erally occurring in any process. The lack of S R-replication
and S R itself in the benign processes suggests the opposite,
that S R-replication may in fact be a characteristic unique to
viruses and not occurring in benign processes.

10 User mode prototype test results

Testing the user implementation of SRRAT against the 66
test viruses was conducted in less than a day. The detection
of S R-replication for the viruses is listed in Fig. 16. Out of
66 viruses in the test set 18 were terminated and flagged as
attempting to execute S R-replication. When each of these
viruses were terminated by SRRAT, the virus’s S R-replica-
tion graph was created and saved to a text file. The S R-

replication graph for the Alanis email worm is presented
in Fig. 15. The graph shows the Alanis worm attempted
S R-replication by first invoking the Readfile API func-
tion with itself as the source parameter, the function returned
the memory address 1568460 pointing to the buffer contain-
ing the read portion of the virus, this function call makes
Alanis an S R process for invoking a read general opera-
tion using itself as the source of the read, thus Alanis is
reading itself. The virus then called the Writefile Api
function using the memory address 1568460 as the source
of the write and the destination was the file kerneldll32.api.
When this function was called SRRAT established transitiv-
ity between kerneldll32.api and gallo.exe which is the virus
file itself. This positive test for transitivity showed Alanis to
be attempting S R-replication and was terminated. SRRAT
always terminated these processes before the actual Write-
file function was invoked, this prevented the S R-replica-
tion from completing. Furthermore the graph show the read
operation was the first operation to occur dealing with S R,
this is noted by the 1 next to the function name, the number 2
next to the write operation function name indicates this oper-
ation was then the second that occurred dealing with S R. The
significance of this numbering is that SRRAT not only termi-
nated Alanis for attempting S R-replication but it terminated
Alanis on it’s first attempt of S R-replication.

We classified the viruses that were not terminated into
two groups: those viruses not hooked by SSRAT listed in
Fig. 17 and those viruses that did not attempt S R-replication
during testing which are listed in Fig. 18. Of the remaining
48 viruses that were not terminated, 15 of them executed
and did not attempt S R-replication by the use of API func-
tion calls in a way that was detectable by SRRAT. Some
of these viruses perform S R-replication in Kernel mode and
others will only replicate when certain conditions are met and
quite possibly these conditions were not present in the vir-
tual machine. Interestingly, 5 of these viruses: watcher.a,
weakas, rega.a, delf.a and ezio.a had previously
attempted S R-replication during the theory validation test-
ing. During that testing the S R-replication had been identi-
fied by the log files of API SPY 32. We later concluded that
these 5 viruses that should have been detected were not as
a result of the implementation of SRRAT missing some key
functionality which prevented detection from occurring.

Of the 48 viruses not terminated by SRRAT, 33 were
not hooked by SRRAT when execution commenced. SRRAT
notifies us through a log file of it’s activities while it runs.
When it hooks a process the action is noted in the log file.
When each of the 33 viruses listed in Fig. 17 were executed
one by one, the SRRAT log file did not contain any entry
documenting a successful hook of the executing virus. These
viruses executed fully on the system with no monitoring of
them being conducted by SRRAT. Some of these viruses actu-
ally run in Kernel mode and are able to bypass user mode

123

176 J. A. Morales et al.

Fig. 16 Virus test results user
implementation of SRRAT

Virus Virus
Name Detected Name Detected
Email-Worm.Win32.Alanis Y Net-Worm.Win32.Webdav.a N
Email-Worm.Win32.Android N Net-Worm.Win32.Zusha.a N
Email-Worm.Win32.Anpir.a N Net-Worm.Win32.Zusha.b N
Email-Worm.Win32.Antiax N Net-Worm.Win32.Zusha.c N
Email-Worm.Win32.Apost Y Net-Worm.Win32.Zusha.e Y
Email-Worm.Win32.Asid.a N Net-Worm.Win32.Zusha.f Y
Email-Worm.Win32.Bandet.a N P2P-Worm.Win32.Agobot.a Y
Email-Worm.Win32.Bater.a N P2P-Worm.Win32.Agobot.b Y
Email-Worm.Win32.Benny N P2P-Worm.Win32.Agobot.c Y
Email-Worm.Win32.Bimoco.a N P2P-Worm.Win32.Agobot.d Y
Email-Worm.Win32.Bormex N P2P-Worm.Win32.Aplich N
Email-Worm.Win32.Borzella Y P2P-Worm.Win32.Blaxe Y
Email-Worm.Win32.Botter.a N P2P-Worm.Win32.Cassidy Y
Email-Worm.Win32.Burnox Y P2P-Worm.Win32.Compux.a N
Email-Worm.Win32.Calposa Y P2P-Worm.Win32.Delf.a N
Email-Worm.Win32.Canbis.a N P2P-Worm.Win32.Erdam N
Email-Worm.Win32.Happy N P2P-Worm.Win32.Flocker.01 Y
Email-Worm.Win32.Klez.b N P2P-Worm.Win32.Gagse Y
Email-Worm.Win32.Klez.c N P2P-Worm.Win32.Gedza.c N
Email-Worm.Win32.Klez.d N P2P-Worm.Win32.Irkaz N
Email-Worm.Win32.Klez.e N P2P-Worm.Win32.Kanyak.a N
Email-Worm.Win32.Klez.f N P2P-Worm.Win32.Kapucen.b Y
Email-Worm.Win32.Klez.g N P2P-Worm.Win32.Weakas N
Email-Worm.Win32.Klez.i N Virus.Win32.Arch.a N
Email-Worm.Win32.Klez.j N Virus.Win32.BCB.a Y
Email-Worm.Win32.Sircam.d N Virus.Win32.Bee N
Net-Worm.Win32.Doomran N Virus.Win32.Canbis.a N
Net-Worm.Win32.Ezio.a N Virus.Win32.Jlok N
Net-Worm.Win32.Maslan.b N Virus.Win32.Redemption Y
Net-Worm.Win32.Nimda N Virus.Win32.Small.c N
Net-Worm.Win32.Rega.a N Virus.Win32.Spreder N
Net-Worm.Win32.Sasser.b N Virus.Win32.Watcher.a N
Net-Worm.Win32.Syner.a N Virus.Win32.Zori.a N

detectors such as SSRAT. But others do show usage of API
function calls in user mode. These were not detected due
to lack of functionality in the user mode implementation of
SRRAT.

Virus Virus
Name Name
Email-Worm.Win32.Android Email-Worm.Win32.Anpir.a
Email-Worm.Win32.Antiax Email-Worm.Win32.Asid.a
Email-Worm.Win32.Bandet.a Email-Worm.Win32.Bater.a
Email-Worm.Win32.Benny Email-Worm.Win32.Bimoco.a
Email-Worm.Win32.Bormex Email-Worm.Win32.Canbis.a
Email-Worm.Win32.Klez.b Email-Worm.Win32.Klez.c
Email-Worm.Win32.Klez.d Email-Worm.Win32.Klez.e
Email-Worm.Win32.Klez.f Email-Worm.Win32.Klez.g
Email-Worm.Win32.Klez.i Email-Worm.Win32.Klez.j
Email-Worm.Win32.Sircam.d Net-Worm.Win32.Maslan.b
Net-Worm.Win32.Nimda Net-Worm.Win32.Sasser.b
Net-Worm.Win32.Syner.a Net-Worm.Win32.Webdav.a
P2P-Worm.Win32.Compux.a P2P-Worm.Win32.Erdam
P2P-Worm.Win32.Gedza.c P2P-Worm.Win32.Irkaz
P2P-Worm.Win32.Kanyak.a Virus.Win32.Bee
Virus.Win32.Jlok Virus.Win32.Small.c
Virus.Win32.Zori.a

Fig. 17 Viruses not hooked by user implementation of SRRAT

Testing for false positives occurred together with usabil-
ity as a real time monitor by running SRRAT on two desktop
computers for three days. During this time the two comput-
ers were used under normal conditions plus some installation
programs were purposely run in an attempt to cause SRRAT
to produce a false positive. At the end of the three days
SRRAT did not report a single process as having attempted
S R-replication, no processes were terminated as a result of
exhibiting possible virus behavior which ultimately means
that no false positives were produced. The testing also showed
the user mode implementation of SRRAT not to be a very
practical real time monitor and detector. On five occasions,
one of the computers had to be rebooted due to very slow
operation resulting from SRRAT consuming high amounts
of resources thus starving all the other processes running
on the computer. On several occasions, SRRAT would crash
when attempting to hook a process that was running at the
time SRRAT was started. On a few occasions when SRRAT
was terminated it still kept running and the process had to be
terminated directly and ungracefully using Windows system
tools. These problems were all implementation related and

123

Identification of file infecting viruses through detection of self-reference replication 177

Fig. 18 Viruses not exhibiting
SR-replication in user mode
SRRAT Testing

Virus Virus Virus
Name Name Name
Virus.Win32.Watcher.a Virus.Win32.Spreder Virus.Win32.Canbis.a
Virus.Win32.Arch.a P2P-Worm.Win32.Weakas P2P-Worm.Win32.Delf.a
P2P-Worm.Win32.Aplich Net-Worm.Win32.Zusha.c Net-Worm.Win32.Zusha.b
Net-Worm.Win32.Zusha.a Net-Worm.Win32.Rega.a Net-Worm.Win32.Ezio.a
Net-Worm.Win32.Doomran Email-Worm.Win32.Happy Email-Worm.Win32.Botter.a

Fig. 19 Summary results
Kernel implementation SRRAT
Virus Test

Email Peer-to-Peer Network IM Win32 Win32 Total
Worms Worms Worms Worms Worms Viruses Amount

-replication 67 50 45 2 1 19 184
No -replication 28 28 38 0 0 89 183
True Positve 70% 64% 54% 100% 100% 18% 50%
False Negative 30% 36% 46% 0% 0% 82% 50%

despite them no false positives occur and virus detection had
been successful in some cases.

Overall, we feel the testing of the user mode implementa-
tion of SRRAT had mixed results. On the one hand detecting
a subset of the test viruses shows that detection of S R-repli-
cation in user mode is possible. The non-production of false
positives further reenforces the idea that S R-replication is a
characteristic unique to viruses. On the other hand, imple-
mentation issues due to lack of programming knowledge
within the Windows environment may have led to some false
negative production and a resource intensive implementation
causing many problems that made it not to be the best choice
as a practical tool for real time monitoring and detection
of S R-replication in currently running processes. Only with
increased programming experience in this area can a leaner,
more robust and effective implementation tool be built.

11 Kernel mode prototype test results

A total of 14 days was need to test the Kernel mode imple-
mentation of SRRAT against the 367 test viruses and false
positive testing. To test each virus required 8 days with the
balance of days being used for false positive and usability
testing. A summary of the test results is listed in Fig. 19.
As we can see from the summary the overall testing result
showed half of the test viruses to exhibit S R-replication
behavior with the other have not exhibiting this behavior.

Recall the memory problems encountered during creation
of the implementation were not overcome and these results
were built from analysis of the log files produced by the
Kernel Mode implementation of SRRAT. Besides the four
main categories of viruses we also added one and two sam-
ples of two new categories which were Instant Messaging
viruses and Win32 Worms. These are not major categories
of our test set and they were added just to have at least one
sample to make the test set representative of other virus cat-
egories.

Fig. 20 SRRAT Kernel mode log file amus virus

Viewing the results by virus category is is clear that
S R-replication occurred in the majority of viruses in the
categories of: email worms, network worms, peer-to-peer
worms, instant messaging worms and Win32 worms. The
main cause of the 50/50 split in the overall results is directly
related to the very high false negative rate produced by the
Win32 viruses category.

The viruses showing S R replication did so in one of two
basic forms. The first form was a simple read and write gen-
eral operations. This form was not the dominant one in the
log file analysis of the virus executions. A sample of this form
is in Fig. 20. The second form and by far the most dominant
was a sequence of operations that began with reading a file
into memory followed by another reading of that memory to
a new memory location and finally writing the memory to a
new file. A sample of this form is in Fig. 21. The log files
clearly showed multiple attempts to perform S R-replication
by several of the test viruses.

The Win32 viruses which produced the highest number of
false negatives, were for the most part the same viruses used
in the testing of the theory validation. In that testing these
viruses showed no attempts whatsoever of S R-replication.
In testing these viruses again with the Kernel implementa-
tion of SRRAT those results were confirmed by the log file
analysis. As it turns out by studying the log files, these viruses

123

178 J. A. Morales et al.

Fig. 21 SRRAT Kernel mode log file Borzella virus

either: (1) make a copy of the virus itself into memory one
or more times. In many cases this copy into memory is into
the memory space of a currently running process. or (2) did
not attempt to replicate in any fashion at all. This can be the
result of the failure to find a suitable environment or victim
file to replicate. Given that these viruses performed poorly
during the theory validation testing it is not at all surprising
those findings would be confirmed here as well.

Excluding the Win32 viruses category, the rest of the false
negatives produced in the other categories result from none
of their log files showing any attempt to executed S R-repli-
cation. In several cases these viruses did copy the virus itself
into the memory of currently running processes. Interestingly
there were a few viruses that never attempted replication at
all. These viruses we consider false negatives as well because
their lack of replication can be from the absence of a suit-
able environment needed to replicate. These viruses may in
fact replicate and may even perform S R-replication given the
environment facilitating this for each virus.

False positive testing along with testing for usability as a
real time monitor of the Kernel implementation of SRRAT
was conducted across 4 days. The log files produced by
SRRAT were saved once per hour and were analyzed when
the testing was completed. Analyzing the log files showed
no attempts S R-replication by any of the processes recorded.
Furthermore no S R operations were conducted either by any
process. This gives further support to our assumption of S R-
replication being a characteristic unique to viruses. From a
usability standpoint this version is very robust not causing
and crashing or slowdown of the system at any point during
testing. Furthermore it was never disabled or terminated by
any virus during testing.

Overall we were quite happy with the testing results of the
Kernel implementation of SRRAT. The number of true posi-
tives was much higher than those produced by the user imple-
mentation of SRRAT and no false positives occurred. The
one disappointment though not surprising was the high false
negative amount of the Win32 viruses category. The Ker-

nel implementation of SRRAT proved to be superior to the
user mode in many aspects. It ran leaner, more robust, never
crashed or slowed down the system at any time and proved
capable of detecting far more viruses exhibiting S R-repli-
cation attempts then its user mode counterpart. This imple-
mentation detected 50% 127/259 viruses used for the theory
validation testing and 87% 57/65 of the viruses used for
the user mode implementation testing. Further analysis of
the false negatives showed these viruses never attempted
S R-replication into other files therefore they are not valid
for the testing. The rest of the viruses causing the false neg-
atives simply did not execute correctly in the testing envi-
ronment and there cannot also be used as valid tests. The
result was all the correctly functioning file infecting viruses
that did attempt S R-replication were detected and thus from
this point of view no false negatives were produced. Given
this version is more capable of true positive detection then
the user implementation version along with an overall 50%
false negative production indicates to us this approach may
be best used in conjunction with other known approaches to
compensate their detection abilities with the false negatives
produced by this implementation.

12 Discussion

Analyzing the results of all the testing two conclusions can
be made about S R-replication. First it seems clear that this
form of replication is unique to viruses and not to benign
processes. It may therefore be suitable as a characteristic to
differentiate between the viruses and benign processes. Sec-
ond, implementing this theory is better suited at the lowest
possible level of a system to maximize detection capabilities.
This is evident from the much larger number of true positives
produced by the kernel mode of SRRAT then the user mode
of SRRAT.

The false negative production can be from one of two
observations each with its own unique solution: First the
viruses replicate at different levels from those in our imple-
mentations or they are able to avoid detection, this would
require better programming techniques which is realizable.
Second, these viruses may in fact replicate and our imple-
mentations simply lacks some functionality to detect these
viruses and this functionality is not implementable. In this
case, the best solution would be to compliment this approach
with other known approaches with the assumption that the
combination will reduce the false negatives while at the same
time maintain or increase the true positives.

13 Related work

This research is an extension of the work presented by
Morales et al. [23]. This research enhances the findings by

123

Identification of file infecting viruses through detection of self-reference replication 179

adding a new test prototype specifically to trace kernel mode
system services. This additional testing provided excellent
results with minimal false positives. This additional testing
further shows S R-replication can be implemented at differ-
ent levels of an operating system. More importantly it illus-
trates a better ability to detect more file infecting viruses
then the user mode prototype indicating that implementation
at a lower level can detect more viruses and simultaneously
consume less system resources.

Analysis of system call arguments to detect malicious
attacks is found in [24]. Several models are presented to
characterize system call arguments. These characterizations
are used to detect anomalous behavior. The research states
two assumptions: (1) malicious attacks appear in system
call arguments. (2) system call arguments used in malicious
attacks substantially differ from arguments used during nor-
mal application execution. The models detect anomalies in
the arguments such as unreasonably long string length,
unusual characters and illegitimate values. The analysis of
the arguments are used to create a score that determines if the
system call is part of an attack. The models were trained with
sequences of system calls giving no regard to the sequence but
focusing only on the arguments. The testing results showed
the models to be effective in detecting malicious attacks with
low false positives. Our research also analyzes system call
arguments without considering the sequence in which the
system calls are made. The difference in our approach is
we only consider write and read system calls used during
replication of a virus. We do not detect anomalies in the
actual system call arguments, instead we use the arguments
to show relationships between read and write system calls.
Our approach also requires no training, detection is done
solely based on the appearance of read and write operations
containing S R. These differences facilitate our approach to
detect unknown viruses as opposed to Mutz et al. [24] where
a false negative can occur if an attack not seen in the training
session appears in a system call argument.

Skormin et al. present an approach to detect replication
in self contained propagating malware [25]. Their detection
is done by monitoring at run-time the execution of normal
code under regular conditions. They monitor the behavior of
each process and analyze the system calls, input and output
arguments and the execution results. The Gene of Self Rep-
lication models the replication of a process using building
blocks. Each block is a portion of the self replication pro-
cess including opening, closing, reading, writing and search-
ing for files and directories. The approach detected several
viruses across many classes with little or no false positives.
Our detection method focuses only on read and write oper-
ations that have S R. This is a simplification of the Skormin
et al. approach which consider additional operations such as
search, open, create as essential parts of a replication pro-
cess. Our simplified approach reduces the overhead time and

analysis needed to detect virus replication resulting in faster
detection.

Christodorescu et al. present an algorithm to discover
malicious behavior through differences between malware
execution traces and benign execution traces [26]. The algo-
rithm works by executing a known malware binary and a set
of benign binaries. These executions are analyzed to form
dependency graphs. These graphs show a trace of all system
calls made during execution along with their dependencies
from the passed arguments. The malware graph is minimized
by comparing it to graphs of benign traces and trimming off
the commonalities. This results in a specific trace graph of a
known malware that is usable to detect variants of the same
malware family. The trace is considered malicious because
it was not found in the benign traces and is assumed not to
occur in other benign traces. Our approach is similar to this
one in that we also have system call graphs which are depen-
dency related based on their arguments. These graphs are
used to determine the presence of malicious behavior. A key
difference is our work focuses on the specific behavior of S R-
replication as opposed to Christodorescu et al. which attempt
to detect several different malicious behaviors. S R-replica-
tion is present in all viruses and can be used to detect viruses
belonging to several families and not just variants of one fam-
ily. A second key difference is our approach does not require
preliminary analysis of known viruses. Instead dynamic anal-
ysis of executing processes is conducted to identify S R-rep-
lication which has the advantage of detecting just released
unknown viruses.

Jacob et al. formulate a formal framework for describ-
ing malicious behaviors with a language named Malicious
Behavior Language (MBL) [27]. This language is used to
describe virus self replication behavior as one of three forms:
duplication, infection and propagation. In our research, direct
graphs are used to trace the read and write operations of an
executing process to attempt S R-replication detection. These
graphs represent a subset of the replication descriptions given
by Jacob et al. Our graphs allow for detailed tracing of how
the replication was actually performed by a process, a feature
not included in the MBL language. It is in fact possible to use
the MBL representations of replication as a foundation for
our graphs but not possible to use them directly as tracings
of specific replication instances occurring in an executing
process which our graphs do allow.

14 Conclusion and future work

This research has presented an approach to detecting file
infecting virus behavior by identifying their attempt to rep-
licate. This behavior is characterized by the S R property,
which is a transitive relation existent when a process refers
to itself in read or wri te operations during a replication

123

180 J. A. Morales et al.

attempt. Self-reference replication (S R−replication) is the
focus of our detection approach. One of the key strengths of
our approach is the ability to detect both known and unknown
file infecting viruses without prior knowledge. The detec-
tion approach is independent of the virus implementation,
compilation, programming techniques and functionality. The
approach can be implemented at various operating system
levels to detect virus behavior which allows for fast detec-
tion with reduced overhead.

The results showed S R-replication to be occurring in most
file infecting viruses and in none of the tested benign pro-
cesses. Two implementations of the approach were created
and tested. In both cases no false positives were produced.
The overall conclusions of this research is twofold: First,
S R-replication can be used as a characteristic to differentiate
between viruses and benign processes. Furthermore S R-rep-
lication can detect known and unknown file infecting viruses
when they execute without any a priori knowledge. This abil-
ity makes S R-replication well suited to detect newly released
unknown file infecting viruses upon their initial attempts to
execute S R-replication on a system. Second, a real time pro-
cess monitor and virus detector on a system can be imple-
mented and is usable using S R-replication as long as the
implementation is at a low level of the computer system, for
example the in Kernel mode. Future work includes expand-
ing the approach of S R-replication to detect replication of
viruses into memory and not just files. Another key aspect
is to extend this approach to detect S R-replication across a
network.

Acknowledgments This was supported in part by the National Sci-
ence Foundation under Grant No. HRD-0317692. The views and con-
clusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments either expressed or implied by the above agencies.

References

1. Christodorescu, M., Jha, S., Maughan, D., Song, D., Wang, C.
(eds.): Malware Detection. Springer, Heidelberg (2007). iSBN 0-
387-32720-7

2. Szor, P.: The Art of Computer Virus Research and Defense.
Symantec Press/Addison-Wesley, /Reading (2005). iSBN
9-780321-304544

3. Filiol, E.: Computer viruses: from theory to applications. IRIS
International Series. Springer, Heidelberg (2005). iSBN 2-287-
23939-1

4. Cohen, F.: A Short Course on Computer Viruses. Wiley Profes-
sional Computing, London (1994). iSBN 0-471-00769-2

5. Morales, J., Clarke, P., Deng, Y., Kibria, G.: Characterization of
virus replication. J. Comput. Virology Special Issue on Theory of
Computer Viruses Workshop (2008)

6. Adleman, L.: An abstract theory of computer viruses. In: CRYPTO
’88: Advances in Cryptology, pp. 354–374. Springer, Heidelberg
(1988)

7. von Neumann, J.: Theory of self-reproducing automata.
University of Illinois, Tech. Rep. (1966)

8. Silberschatz, A., Galvin, P., Gagne, G.: Operating System
Concepts. Wiley, New York (2001)

9. Golden, D., Pechura, M.: The structure of microcomputer file
systems. Commun. ACM 29(3), 222–230 (1986)

10. Linden, T.: Operating system structures to support security and
reliable software. ACM Comput. Surv. 8(4), 409–445 (1976)

11. Vx heavens. http://vx.netlux.org/. Acessed November 2007
12. Offensive computing malware repository. http://www.

offensivecomputing.net. Acessed October 2007
13. Api spy 32. [Online]. Available: http://www.matcode.com/apis32.

htm. Acessed November 2007
14. Microsoft windows sysinternals software. http://www.microsoft.

com/technet/sysinternals/. Acessed November 2007
15. Windows api reference. [Online]. Available: http://msdn2.

microsoft.com/en-us/library/aa383749.aspx
16. Nebbett, G.: Windows NT/2000 Native API Reference. Macmil-

lan Technical Publishing, New York (2000). iSBN 1578701996
17. Symantec antivirus research center. http://securityresponse.

symantec.com/. Acessed November 2007
18. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel.

Addison Wesley Professional, Reading (2005). iSBN 0321294319
19. Vieler, R.: Professional Rootkits. Wrox Press, (2007). iSBN

0470101547
20. Windows api reference. http://msdn2.microsoft.com/en-us/

library/aa383749.aspx
21. Kaspersky anti-virus. http://www.kaspersky.com
22. Vmware virtual workstation. http://www.vmware.com
23. Morales, J., Clarke, P., Deng, Y.: Detecting self-reference virus

replication. In: EICAR 2008: Proceedings of the 17th Annual
European Institute for Computer Anti-Virus Research Confer-
ence, 2008

24. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system
call detection. ACM Trans. Inf. Syst. Secur. 9(1), 61–93 (2006)

25. Skormin, V., Volynkin, A., Summerville, D., Moronski, J.: Pre-
vention of information attacks by run-time detection of self-repli-
cation in computer codes. J Comput. Secur. 15(2), 273–302 (2007)

26. C. M., J. S., K. C.: Mining specifications of malicious behavior.
In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE2007)
(2007)

27. Jacob, G., Debar, H., Filiol, E.: Malwares as interactive machines:
a new framework for behavior modeling. In: 2nd International
Workshop on the Theory of Computer Viruses (2008)

123

http://vx.netlux.org/
http://www.offensivecomputing.net
http://www.offensivecomputing.net
http://www.matcode.com/apis32.htm
http://www.matcode.com/apis32.htm
http://www.microsoft.com/technet/sysinternals/
http://www.microsoft.com/technet/sysinternals/
http://msdn2.microsoft.com/en-us/library/aa383749.aspx
http://msdn2.microsoft.com/en-us/library/aa383749.aspx
http://securityresponse.symantec.com/
http://securityresponse.symantec.com/
http://msdn2.microsoft.com/en-us/library/aa383749.aspx
http://msdn2.microsoft.com/en-us/library/aa383749.aspx
http://www.kaspersky.com
http://www.vmware.com

	Identification of file infecting viruses through detection of self-reference replication
	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Self-reference virus replication
	4.1 Definition
	4.2 Detection
	4.3 Example

	5 Implementation prototype
	5.1 ACP: API CAll processor
	5.2 SRD: SR-replication detector

	6 User mode prototype
	6.1 Implementation
	6.2 Limitations

	7 Kernel mode prototype
	7.1 Implementation
	7.2 Limitations

	8 Tests and results
	9 Theory validation test results
	10 User mode prototype test results
	11 Kernel mode prototype test results
	12 Discussion
	13 Related work
	14 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

